Unsaturated nitrogen compounds containing fluorine. Part 14 [1]. A re-investigation of the reaction of 2,5-dichloro-1,1,1,6,6,6-hexafluoro-3,4-diazahexa-2,4-diene with triethylamine and some related reactions

Mohamad M. Abdul-Ghani and Anthony E. Tipping*

Chemistry Department, University of Manchester Institute of Science and Technology, Manchester M60 1QD (UK)

(Received July 24, 1993; accepted October 31, 1993)

Abstract

The reaction of triethylamine with the title azine 1 (2:1 molar ratio) in light gives, as the major product, an orange liquid considered previously to be the Δ^2 -azetine CF₃CCl=N-N-C(CF₃)=CHCHNEt₂ (3), but now shown to be the open-chain isomer, i.e. the triazadecatriene CF₃CCl=NN=C(CF₃)CH=CHNEt₂ (4) by a comparison of its ¹H, ¹³C and ¹⁹F NMR spectra with those of its solid amino derivative CF₃C(NH₂)=NN=C(CF₃)CH=CHNEt₂ (6) (made in 96% yield by reaction of compound 4 with ammonia) the structure of which has been established by X-ray crystallography. A second reaction using a large excess of triethylamine (6:1 molar ratio in light followed by heating at 115 °C) affords compound 4 (17%), its diethylamino derivative CF₃C(NEt₂)=NN=C(CF₃)CH=CHNEt₂ (9) (6%) and the hydrolysis product of compound 9, the dienol $N=C(CF_3)CH=CHC(CF_3)=CHCH(OH)O$ (10) (2%). Treatment of compound 9 with silica gel gives the dienol 10 (84%). The reaction of the triazadecatriene 4 with 1-diethylaminocyclopentene (5) (1:2 molar ratio) affords the 2-substituted enamine $CH_2(CH_2)_2C(NEt_2)=C-C(CF_3)=NN=C(CF_3)CH=CHNEt_2$ (17) (74%) and this on hydrolysis (silica gel) gives the corresponding 2-substituted ketone $O = C(CH_2)_3CH=C(CF_3)CH=CHNEt_2$ (18) (75%) and the pyrazole derivative $O = C(CF_3)NN=C(CF_3)CH=CH(19)$ (15%).

Introduction

It has been reported that the reaction between triethylamine and the dichloroazine 1 (2:1 molar ratio) in light (reaction did not occur in the dark) involved the intermediacy of the enamine $Et_2NCH=CH_2$ (2) and gave a major liquid product considered to be the Δ^2 azetine 3 (40%) on the basis of the spectral data obtained [2], although the ¹H NMR coupling (J=13)Hz) between the two vicinal hydrogens in the azetine ring was much larger than expected. The dihedral angle α between the vicinal hydrogens has been estimated to be c. 70.5° by a computer enhanced modelling program (MOPAC 6.0 using a Textronix Cache Workstation) for which a much lower coupling constant (J=2-6 Hz)would be appropriate. The only other possible structure based on the NMR data is the open-chain isomer of the azetine 3, i.e. the triazadecatriene 4 with two transvinylic hydrogens (expected J = 11-18 Hz).

To resolve the problem of whether the product has structure 3 or 4, the reaction has been repeated with

the object of preparing a solid derivative on which an X-ray crystallographic structure determination could be undertaken. The reaction of a large excess of triethylamine with dichloroazine 1 has also been carried out with the object of synthesising a bis-enamine derivative and the reaction of the enamine 1-diethylaminocyclopentene (5) with compound 3 or 4 has been investigated.

Results and discussion

Reaction of triethylamine with dichloroazine 1 (2:1 molar ratio) *in vacuo* in light at room temperature (7 d) gave unchanged triethylamine (14% recovered), tri-fluoroacetonitrile (6%), impure triethylamine hydro-

^{*}Author to whom correspondence should be addressed.

TABLE 1. NMR	spectra of 2-substituted-8-eth	yl-1,1,1-trifluoro-5-trifluorom	ethyl-3,4,8-triazadec	a-2,4,6-trienes	4, 6, 8, 9,	17 and 18
--------------	--------------------------------	---------------------------------	-----------------------	-----------------	-------------	-----------

X N=	$=C^{CF}$	у Н	
F_{3C}^{2}	5 C=	$=C'_{7N(CH_{2}C_{89})}$	CH ₃) ₂

Compound	Spectrum	δ/ppm (assignment)
4 ^a	¹ H	7.4 (d, 1H, H-7, $J_{6,7}$ =13 Hz); 5.0 (d, 1H, H-6, $J_{7,6}$ =13 Hz); 3.3 (q, 4H, H-9/9', J =7 Hz); 1.2 (t, 6H, H-10/10', J =7 Hz).
6 ^b		7.88 (d, 1H, H-7, $J_{6,7}$ =13.9 Hz); 5.39 (d, 1H, H-6, $J_{7,6}$ =13.9 Hz); 3.45 (q, 4H, H-9/9', J =7.0 Hz); 1.38 (t, 6H, H-10/10', J =7.0 Hz).
8 ^c		7.64 (d, 1H, H-7, $J_{6,7}$ = 13.0 Hz); 5.10 (d, 1H, H-6, $J_{7,6}$ = 13.0 Hz); 3.43 (q, 4H, H-9/9', J =7.0 Hz); 1.20 (t, 6H, H-10/10', J =7.0 Hz).
9 ^d		7.75 (d, 1H, H-7, $J_{6,7}$ =13.0 Hz); 4.98 (d, 1H, H-6, $J_{7,6}$ =13.0 Hz); 3.19 (q, 4H, H-9/9', J =7.0 Hz); 1.16 (t, 6H, H-10/10', J =7.0 Hz).
17 ^e		7.41 (d, 1H, H-7, $J_{6,7}$ =13.5 Hz); 4.97 (d, 1H, H-6, $J_{2,6}$ =13.5 Hz); 3.23 (q, 4H, H-9/9', J =7.2 Hz); 1.16 (t, 6H, H-10/10', J =7.2 Hz).
18 ^f		7.47 (d, 1H, H-7, $J_{6,7}$ = 13.0 Hz); 5.00 (d, 1H, H-6, $J_{7,6}$ = 13.0 Hz); 3.28 (q, 4H, H-9/9', J = 7.0 Hz); 1.22 (t, 6H, H-10/10', J = 7.0 Hz).
4ª 6 ⁶	¹⁹ F	9.0 (s, 3F, CF_3 -1); 12.0 (s, 3F, CF_3 -11). 7.1 (s, 3F, CF_3 -1); 12.0 (s, 3F, CF_3 -11).
8°		14.2 (s, 3F, CF ₃ -1); 11.7 (s, 3F, CF ₃ -11).
9 ^d		10.4 (s, CF_3 -1/11).
17° 18 ^f		8.9 (s, 3F, CF_3 -1); 11.1 (s, 3F, CF_3 -11). 9.0 (s, 3F, CF_3 -1); 11.1 (s, 3F, CF_3 -11).
4 ^a	¹³ C	152.9 (q, C-5, ${}^{2}J$ = 30.7 Hz); 151.6 (s, C-7); 130.0 (q, C-2, ${}^{2}J$ = 40.1 Hz); 121.1 (q, C-11, ${}^{1}J$ = 277.4 Hz); 117.8 (q, C-1, ${}^{1}J$ = 273.9 Hz); 83.3 (s, C-6); 51.2 and 42.3 (2s, C-99()): 14.5 and 11.1 (2s, C-10/10')
6 ^b		152.2 (q, C-5, ^{2}J = 29.4 Hz); 149.9 (s, C-7); 146.5 (q, C-2, ^{2}J = 34.5 Hz); 121.7 (q, C-11, ^{2}J = 277.2 Hz); 118.9 (q, C-1, ^{4}J = 274.7 Hz); 83.4 (s, C-6); 50.3 and 41.7 (2s, C-99'): 14.3 and 11.6 (2s, C-10/10')
8°		149.2 (s, C-7); 148.1 (q, C-5, $^{2}J = 29.5$ Hz); 143.3 (q, C-2, $^{2}J = 30.2$ Hz); 122.0 (q, C-11, $^{1}J = 276.7$ Hz); 119.9 (q, C-1, $^{1}J = 278.4$ Hz); 83.5 (s, C-6); 45.3 (s, C-99'): 14.1 (s, C-10/10')
9 ^d		150.1 (s, C-7); 147.9 (q, C-2/5, ${}^{2}J$ = 29.4 Hz); 122.0 (q, C-1/11, ${}^{1}J$ = 276.8 Hz); 83.3 (s, C-6); 49.4 and 42.8 (2s, C-9/9'): 12.9 (s, C-10/10')
17°		151.3 (q, C-5, ${}^{2}J$ = 30.5 Hz); 149.7 (s, C-7); 147.6 (q, C-2, ${}^{2}J$ = 30.2 Hz); 121.8 (q, C-1, ${}^{1}J$ = 278.0 Hz); 121.6 (q, C-11, ${}^{1}J$ = 276.9 Hz); 84.0 (s, C-6); 44.7 (s, C-9/2) : 13.3 (s, C-10/2)
18 ^f		153.1 (s, C-7); 150.4 (q, C-5, ${}^{2}J$ = 30.2 Hz); 146.8 (q, C-2, ${}^{2}J$ = 32.5 Hz); 121.4 (q, C-11, ${}^{1}J$ = 277.3 Hz); 120.8 (q, C-1, ${}^{1}J$ = 274.7 Hz); 83.8 (s, C-6); 50.8 and 42.3 (2s, C-9/9'); 14.2 and 11.4 (2s, C-10/10').

 $^{a}X = Cl.$

 ${}^{b}X = NH_2$ [¹H NMR δ : 5.46 (br., 2H, NH₂) ppm.].

 $^{c}X = N(CH_{2}CH_{3})_{2}$ [¹H NMR δ : 3.32 (q, 4H, 2CH₂N, J=7.0 Hz); and 1.20 (t, 6H, 2CH₃, J=7.0 Hz) ppm. ¹³C NMR δ : 45.3 (s, 2CH₂N); and 14.1 (s, 2CH₃) ppm].

 $^{d}X = (E) - CH = CHNEt_2.$

 $^{\circ}X = -C = C(NEt_2)CH_2CH_2CH_2$ [¹H NMR δ : 2.89 (q, 4H, 2CH₂N, J = 7.0 Hz); 2.58 (t, 2H, ring CH₂, J = 7.5 Hz); 2.54 (t, 2H, ring CH₂, J = 7.5 Hz); 1.83 (pentet, 2H, ring CH₂CH₂CH₂, J = 7.5 Hz); and 0.97 (t, 6H, 2CH₃, J = 7.0 Hz) ppm. ¹³C NMR δ : 157.5 (s, ring =C-N); 94.2 (s, ring =C-C); 44.7 (s, 2CH₂N); 35.2 and 33.3 (2s, 2 ring CH₂-C=); 21.3 (s, ring CH₂CH₂CH₂); and 13.3 (s, 2CH₃) ppm].

¹X = $-CHCH_2CH_2CH_2C = O$ [¹H NMR δ : 3.26 (mult., 1H, ring CH); and 2.50, 2.36–2.18 and 1.84 (3 mult., 1H, 4H and 1H, 3 ring CH₂) ppm. ¹³C NMR δ : 213.2 (s, C=O); 48.8 (s, ring CH); 37.2 (s, ring CH₂C=O); and 27.1 and 21.9 (2s, 2 ring CH₂) ppm].

chloride, compound 3 or 4 (43%) and tar. Treatment of the product 3 or 4 with an excess of aqueous ammonia (c. 1 d) afforded a solid amino derivative (96%) which was shown to be the open-chain triazadeca-2(Z),4(E),6(E)-triene (6) by a single crystal X-ray structure determination [3].

The ¹H NMR spectrum of compound 6 showed a *trans* coupling (J=13.9 Hz) for the two vinylic hydrogens, which was of the same magnitude as that observed (J=13 Hz) in the spectrum of compound 3 or 4. Furthermore, the ¹H, ¹⁹F and ¹³C NMR spectra (Table 1) of the two compounds were virtually identical with due allowance made for the replacement of Cl by NH₂, thus establishing that the product isolated from the reaction of triethylamine with dichloroazine 1 is the open-chain triazadeca-2(Z),4(E),6(E)-triene (4) and not the Δ^2 -azetine 3.

Compound 4 is considered to have been formed by a single-electron transfer (SET) mechanism, as postulated previously [2], to afford as initial products, trifluoroacetonitrile, triethylamine hydrochloride and the enamine 2. Nucleophilic attack on unchanged dichloroazine 1 then yielded compound 4 and hydrogen chloride which was isolated as triethylamine hydrochloride (Scheme 1).

Evidence has been advanced [4] for the intermediacy of the radical Et₂NĊHMe as a precursor to enamine 2 in the photoreaction of ketones with triethylamine and an SET mechanism was proposed for the reduction of the *ortho*-quinone, β -lapachone, with triethylamine induced by visible light and involving the radical cation Et₃N as a precursor to the radical Et₂NĊHMe and hence the enamine 2 [5]. Reaction of a large excess of triethylamine with dichloroazine 1 (6:1 molar ratio) *in vacuo* in light at room temperature (7 d) gave mainly compound 4 (TLC) and so the reactants were resealed in the ampoule and heated at 115 °C (14 d) to afford unchanged triethylamine (53.5% recovered), triethylamine hydrochloride (61% on Et₃N used; 86% on azine 1), a higher boiling mixture from which the four major components, i.e. compound 4 (17%), the diethylamino-substituted triene 8 (12%), the tetra-azatetraene 9 (6%) and the bicyclic dienol 10 (2%) were separated, and tar. The dienol 10 was formed by hydrolysis of the tetra-azatetraene 9 as shown by exposing the tetraene 9 to silica gel (1 d) which gave the dienol 10 (84%).

Compound 8 (then presumed to be the isomeric diethylamino-substituted Δ^2 -azetine) has been made previously (i) by reaction of the monochloroazine 11 with triethylamine at 130 °C (7 d) in 75% yield and (ii) by reaction of compound 4 (thought to be the Δ^2 -azetine 3) with diethylamine (1:2 molar ratio) in diethyl ether at room temperature in 88% yield [2] (Scheme 2).

The IR, ¹H, ¹³C and ¹⁹F NMR, and mass spectra of compound 8 were identical to those reported [2] and the ¹H, ¹³C and ¹⁹F NMR spectra were very similar to those of compounds 4 and 6 (Table 1).

Compound 9 is symmetrical about the N-N bond and NMR absorptions were only observed for one $Et_2NCH=CHC(CF_3)=N-$ grouping; the absorptions were in agreement with the absorptions for the same grouping in compounds 4, 6 and 8 (Table 1).

The dienol 10 gave correct elemental analysis figures (for C, H and N) and a molecular ion peak (m/z; 276)in its mass spectrum confirmed the molecular formula as C₈H₆N₂OF₆. The ¹H, H,H-COSY, ¹³C and ¹⁹F NMR spectra established the structure as follows. The vinylic proton [$\delta_{\rm H}$: 5.34 (dq, 1H, J=3.2 and 1.7 Hz) ppm. $\delta_{\rm C}$: 113.0 (q, ${}^{3}J=4.1$ Hz) ppm] in a CF₃C=CH grouping was shown by a H,H-COSY spectrum to be coupling to a low-field non-vinylic proton [$\delta_{\rm H}$: 5.99 (dd, 1H, J = 3.2 and 1.0 Hz) ppm. $\delta_{\rm C}$: 85.9 ppm] with the chemical shifts consistent with a -CH(O)-O- grouping. This evidence, together with the presence of a hydroxyl proton [$\delta_{\rm H}$: 3.08 ppm, IR ($\nu_{\rm max.}$) (cm⁻¹): 3380 (O-H str.)], gave the partial structure CF₃C=CH-CH(OH)-O-. A low-field methine proton [$\delta_{\rm H}$: 5.67 (dt, 1H, J = 7.4 and 0.4 Hz) ppm. δ_{C} : 80.9 ppm] showed coupling to two non-equivalent methylene protons CH_AH_B [δ_H : 3.32 (ABdd, 1H, H_A, $J_{B,A}$ = 18.0 Hz, J = 7.4 and 1.8 Hz) and 3.04 (ABdd, 1H, H_B, $J_{A,B}$ = 18.0 Hz, J = 1.0 and 0.4 Hz) ppm], and the chemical shift of the methine proton was consistent with it being bonded to nitrogen and to oxygen. This indicated that the dienol contained the extended partial structure $CF_3C =$

CH-CH(OH)-O-CH(N-)-CH_AH_B-. The ¹³C NMR spectrum also showed the presence of two CF₃ carbons [$\delta_{\rm C}$: 119.9 (q, ¹J=273.7 Hz) and 119.8 (q, ¹J=270.6 Hz) ppm], a β -imino carbon CF₃C=N [$\delta_{\rm C}$: 145.7 (q, ²J=38.9 Hz) ppm] and a β -vinylic carbon CF₃C=C [$\delta_{\rm C}$: 131.9 (q, ²J=36.4 Hz) ppm]; the ¹⁹F NMR spectrum confirmed the presence of two nonequivalent CF₃ groups ($\delta_{\rm F}$: +10.7 and +10.1 ppm). This gave the partial structure CF₃C=N-N-C(CF₃)=

based on the azine skeleton present in the tetraene 9 and, when combined with the extended partial structure above, established that the product was the dienol 10.

Compounds 8–10 are considered to have been formed from the triene 4 as shown in Scheme 3.

Nucleophilic attack on the imino carbon of the $CF_3CCl=N-$ grouping in triene 4 by triethylamine gives the zwitterion 11 which, by a concerted loss of hydrogen chloride and ethene, affords the substituted triene 8, while nucleophilic attack by enamine 2 followed by elimination of hydrogen chloride yields the tetra-azatetraene 9.

Acid-catalysed hydrolysis of the tetraene 9 on silica gel involved initial formation of the mono-aldehyde 12 and then the dialdehyde 13 with concurrent elimination of diethylamine. Tautomerisation of the dialdehyde 13 to the conjugated endial 14 on acid catalysis, followed by cyclisation involving internal nucleophilic attack by nitrogen on the carbonyl carbon of the non-conjugated aldehyde group, leads to the alkoxide 15 which undergoes a second nucleophilic attack by oxygen on the carbonyl carbon of the remaining conjugated aldehyde group. The resulting intermediate **16** affords the dienol **10** by protonation/deprotonation.

Treatment of the triene 4 with the enamine 5 (1:2 molar ratio) in diethyl ether under a nitrogen atmosphere gave the 2-substituted enamine 17 (74%) and this on hydrolysis with silica gel afforded the corresponding 2-substituted cyclopentanone 18 (75%) and the bicyclic pyrazole 19 (15%).

Compound 17 was formed analogously to the tetraene 9 by nucleophilic attack by the β -carbon of the enamine on the imino carbon of the CF₃CCl=N- grouping in compound 4 followed by loss of hydrogen chloride. The isolation of the 2-substituted cyclopentanone 18 as the major hydrolysis product showed that the cyclic enamine grouping is hydrolysed more readily than the openchain enamine grouping in compound 17. Hydrolysis of the second enamine grouping in compound 18 to afford the onal 20, followed by tautomerisation, cyclisation and then elimination of water gave the bicyclic pyrazole 19 (Scheme 4).

An accurate mass measurement on compound 17 and correct elemental analysis figures (for C, H and N) together with molecular ion peaks (m/z: 371 and 298, respectively) in the mass spectra of compounds 18 and 19 established the molecular formulae of the three compounds. Their structures were then established by the following spectral data.

Compounds 17 and 18 were clearly derivatives of the triene 4 as shown by a comparison of their NMR spectra with those of the compounds 4, 6, 8 and 9 and the substituent X was shown to be diethylaminocyclopenten-2-yl and cyclopentanon-2-yl, respectively, by the ¹H and ¹³C NMR absorptions (Table 1).

For compound **19**, the presence of a 1-substituted 3-trifluoromethylpyrazole ring was shown by two coupled vinylic protons [¹H NMR δ : 7.48 (d, 1H, =CH-N, J=2.8 Hz) and 6.67 (d, 1H, =CH-C, J=2.8 Hz) ppm. ¹³C NMR δ : 133.4 and 102.9 ppm] and a CF₃C=N grouping [¹³C NMR δ : 144.5 (q, CF₃C=N, ²J=38.8 Hz); and 120.7 (q, CF₃C=N, ¹J=268.6 Hz) ppm. ¹⁹F NMR δ : 16.4 (s) ppm]. A cyclopentanon-2-ylidine ring was also present as shown by a ketonic carbonyl group

Scheme 3.

(¹³C NMR δ : 201.8 ppm), three coupled methylene groups [¹H NMR δ : 3.12 (tq, 2H, CH₂CH₂C=, J=7.5 Hz, J_{CF-CH} =3.0 Hz); 2.39 (t, 2H, CH₂CH₂C=O, J=7.5 Hz); and 2.06 (pentet, CH₂CH₂CH₂, J=7.5 Hz) ppm. ¹³C NMR δ : 38.5 (s, $CH_2C=O$); 28.5 (q, $CH_2C=$, $^{4}J=2.3$ Hz); and 18.5 (s, CH₂CH₂CH₂) ppm] and a vinylic carbon [¹³C NMR δ : 141.8 (s) ppm] which was bonded to a =C(CF₃)-N grouping [¹³C NMR δ : 144.5 (q, = $C(CF_3)-N$, $^{2}J=45.1$ Hz); and 120.4 (q, =C(CF₃)-N, ¹J=276.7 Hz) ppm. ¹⁹F NMR δ : 13.6 (t, CF₃, $J_{CH-CF}=3.0$ Hz) ppm]. This evidence proved conclusively that the product was the pyrazole derivative **19**.

The coupling (J=3.0 Hz) observed between the CF₃ group in the =C(CF₃)-N grouping and the hydrogens of the CH₂C= methylene group indicated strongly that the carbonyl group is *anti* to the CF₃ group and it is possible that this isomer is favoured because of hydrogen bonding between the carbonyl oxygen and the vinylic proton adjacent to nitrogen in the pyrazole ring.

Experimental

Starting materials

The dichloroazine 1 was synthesised in 60% yield by the reaction of trifluoroacetic acid with hydrazine (2:1 molar ratio) to give the bishydrazide CF₃CO-NHNHCOCF₃, followed by treatment with phosphoryl chloride and *N*,*N*-dimethylaniline hydrochloride [6], and 1-diethylaminocyclopentene (5) was prepared by treatment of diethylamine in diethyl ether with cyclopentanone and calcium chloride (12 mesh) [7]. Triethylamine was a commercial sample which was distilled and its purity checked (IR and ¹H NMR spectroscopy) before use.

General techniques

Products were examined by TLC (eluants as in text) and then purified where necessary, or the individual components of mixtures separated by dry column flash chromatography (DCFC) using silica gel (Fluka 60 GF₂₅₄) or neutral alumina (Brockmann 1, standard grade) and eluants as given in the text; the eluant referred to as light petrolcum is the petrolcum ether fraction, b.p. 30-40 °C.

Purified products and separated components were examined by IR spectroscopy (Perkin-Elmer DE783 instrument), ¹H NMR (including H,H-COSY) spectroscopy [Bruker AC300 (300 MHz) spectrometer; external reference Me₄Si], ¹⁹F NMR spectroscopy [Bruker AC200 (188.3 MHz) instrument; external reference

CF₃CO₂H], ¹³C NMR (including DEPT 135°) spectroscopy [Bruker AC300 (75.0 MHz) instrument with broad band proton decoupling and D_2O as the deuterium lock signal; external reference Me₄Si], and mass spectrometry (Kratos MS25 or MS45 instruments with an electron beam energy of 70 eV for low-resolution spectra and a Kratos Concept IS spectrometer for accurate mass measurement). The NMR spectra were run on solutions in CDCl₃ and chemical shifts to low field of reference are designated positive.

Boiling points were determined by Siwoloboff's method and melting points are uncorrected.

Reaction of 2,5-dichloro-1,1,1,6,6,6-hexafluoro-3,4diazahexa-2,4-diene (1) with triethylamine

(a) Experiment 1 (1:2 molar ratio)

A mixture of the dichloroazine 1 (3.00 g, 11.49 mmol) and triethylamine (2.32 g, 22.99 mmol), shaken *in vacuo* in a Rotaflo ampoule ($c. 50 \text{ cm}^3$) in light (7 d), gave

(i) trifluoroacetonitrile (0.14 g, 1.47 mmol, 6%) which condensed at -196 °C, (ii) unchanged triethylamine (0.133 g, 3.27 mmol, 14% recovered) which condensed at -78 °C and -120 °C, and (iii) a residue which was washed out of the tube with diethyl ether (3×20 cm³) and then filtered to give impure triethylamine hydrochloride (2.08 g, 15.13 mmol).

The filtrate was washed with water $(2 \times 25 \text{ cm}^3)$, then with aqueous hydrochloric acid $(2 \text{ M}, 2 \times 25 \text{ cm}^3)$, dried $(MgSO_4)$ and the diethyl ether removed *in vacuo* to afford an orange oil (2.33 g) which was shown by TLC (eluant: n-hexane/dichloromethane 2:1 v/v) to contain one major component (R_F 0.29) and several minor components. The major component was purified by DCFC (same eluant) to give 2-chloro-8-ethyl-1,1,1trifluoro-5-trifluoromethyl-3,4,8-triazadeca-2,4,6-triene (4) (1.59 g, 4.92 mmol, 43%) which was identified by a comparison of its IR, ¹H, ¹³C and ¹⁹F NMR, and mass spectra with those reported [2] and with those obtained for its amino derivative (see later).

(b) Experiment 2 (1:6 molar ratio)

A mixture of the dichloroazine 1 (4.00 g, 15.33 mmol) and triethylamine (9.30 g, 92.1 mmol) was shaken *in* vacuo in a Rotaflo ampoule (c. 100 cm³) in light (7 d) and the volatile material was removed *in vacuo* to give a residue which was shown by TLC to contain mainly triazadecatriene 4. The volatile material and the residue were resealed in the ampoule *in vacuo* and heated at 115 °C (14 d). Work-up as in experiment 1 afforded unchanged triethylamine (4.98 g, 49.3 mmol, 53.5% recovered), triethylamine hydrochloride (3.59 g, 26.30 mmol, 61%) and a residue (4.65 g), which was shown by TLC (eluant: light petroleum/dichloromethane 1:2 v/v) to contain four major components (R_F 0.65, 0.30, 0.12 and 0.10) as well as base line material (tar).

The four major components were separated by DCFC (same eluant) to give (i) triazadecatriene 4 (0.82 g, 2.5 mmol, 17%), (ii) 3,10-diethyl-4,7-bis(trifluoromethyl-3,5,6,10-tetra-azadodeca-4,6,8-triene (8) (0.66 g, 1.83 mmol, 12%), which was identified by a comparison of its IR, ¹H, ¹³C and ¹⁹F NMR, and mass spectra with those reported [2], (iii) an orange solid which was identified as 3,12-diethyl-6,9-bis(trifluoromethyl)-3,7, 8,12-tetra-azatetradeca-4,6,8,10-tetraene (9) (nc) (0.40 g, 1.04 mmol, 6%). Analysis: Found: C, 49.4; H, 5.9; N, 14.2%; M⁺, 386. C₁₆H₂₄N₄F₆ requires: C, 49.7; H, 6.2; N, 14.5%; M, 386. Mass spectrum (m/z): 386 (88%, M^+ ; 314 [44, $(M - Et_2N)^+$]; 240 [17, $(M - 2Et_2N)^+$]; 231 (26, $C_6H_3N_2F_6^+$); 193 (19, $C_8H_{12}N_2F_3^+$); 178 (85, $C_8H_{11}NF_3^+$; 125 (10, $C_7H_{13}N_2^+$); 72 (28, Et_2N^+); 69 $(25, CF_3^+); 56 (29, C_3H_6N^+); 42 (47, C_2H_4N^+); 41$ $(14, C_2H_3N^+); 29 (100, C_2H_5^+); 27 (39, C_2H_3^+).$ IR (ν_{max}) (cm⁻¹): 3020 (w, vinylic C-H str.); 2980 (m, aliph. C-H str.); 1605 (s, C=C str.); 1550 (m, C=N str.); 1450 (m, CH₂ bend); 1375 (m, CH₃ bend); 1200-1110 (s, C-F str.); 1060 (m, C-N str.); 780 (m, CF₃ def.), and (iv) 2,8-bis(trifluoromethyl)-1,9-diaza-5oxabicyclo[4.3.0^{1,6}]nona-2,8-dien-4-ol (10) (0.08 g, 0.28 mmol, 2%) which was identified by a comparison of its ¹H, ¹⁹F and ¹³C NMR spectra with those of an authentic sample (see next experiment).

Hydrolysis of 3,12-diethyl-6,9-bis(trifluoromethyl)-3,7,8,12-tetra-azatetradeca-4,6,8,10-tetraene (9)

A solution of the tetraene 9 (0.20 g, 0.52 mmol) in dichloromethane (10 cm³) was poured on to the top of a DCFC sintered column (40–50 mm) filled with silica gel (c. 30 g) and left for 1 d before eluting with successive portions (10 cm³) of dichloromethane. One product was obtained, which was identified as 2,8-bis(trifluoromethyl)-1,9-diaza-5-oxabicyclo[4.3.0^{1,6}]-nona-2,8-dien-4-ol (10) (nc) (0.12 g, 0.43 mmol, 84%).

Analysis: Found: C, 35.1; H, 2.3; N, 10.1%; M⁺ 276. C₈H₆N₂O₂F₆ requires: C, 35.0; H, 2.1; N, 10.0%; M, 276. M.p. 112-114 °C. ¹H NMR δ: 5.99 (dd, 1H, -OCHOH, J = 3.2 and 1.0 Hz; 5.67 (dt, 1H, O-CH-N, J=7.4 and 0.4 Hz); 5.34 (dq, 1H, =CH, J=3.2 and 1.7 Hz); 3.32 (ddq, 1H, CH_A in CH_AH_B; $J_{AB} = 18.8$ Hz; J = 7.4 and 1.8 Hz); 3.08 (br., 1H, OH); and 3.04 (ddd, 1H, CH_B in CH_AH_B; $J_{B,A} = 18.8$ Hz; J = 1.0 and 0.4 Hz) ppm. ¹⁹F NMR δ : +10.7 (s, CF₃); +10.0 (br., CF₃) ppm. ¹³C NMR δ : 145.7 (q, =C-N, ²J=38.9 Hz); 131.9 (q, C=N, ${}^{2}J$ =36.4 Hz); 119.9 (q, CF₃, ${}^{1}J$ =273.7 Hz); 119.8 (q, CF₃, ${}^{1}J = 270.6$ Hz); 113.0 (q, =CH, ${}^{3}J = 4.1$ Hz); 85.9 (s, CH-O); 80.9 (s, CH-N); 37.3 (s, CH₂) ppm. Mass spectrum (m/z): 276 (73%, M⁺); 259 [21, $(M - OH)^+$; 257 [24, $(M - F)^+$]; 247 [4, $(M - CHO)^+$]; 231 (52, $C_7H_5N_2F_6^+$); 211 (72, $C_7H_4N_2F_5^+$); 207 [13, $(M - CF_3)^+$; 181 (34, $C_6H_6NOF_3^+$); 180 (23, $C_6H_5NOF_3^+$; 138 (28, $C_6H_6N_2O_2^+$); 121 (32, $C_3N_2F_3^+$); 112 (89, $C_4H_4N_2O_2^+$); 95 (18, $C_2NF_3^+$); 76 (15, $C_4N_2^+$); 69 (100, CF_3^+); 42 (33, $C_2H_2O^+$); 41 (20, C_2HO^+); 29 (38, CHO⁺). IR (ν_{max}) (cm⁻¹): 3380 (br., O-H str.); 3100 (w, vinylic C-H str.); 2960 (w, aliph. C-H str.); 1665 (w, C=C str.); 1620 (m, C=N str.); 1440 (m, CH_2 bend); 1220–1110 (s, C-F str. and C-O str.); 1075 (m, C-N str.); 1000 (s, N-N str.); 865 (m, =C-H)out-of-plane bending); 780 (m, CF₃ def.).

Reactions of 2-chloro-8-ethyl-1,1,1-trifluoro-5trifluoromethyl-3,4,8-triazadeca-2,4,6-triene (4) (a) With ammonia

Aqueous ammonia (0.60 g, 12.4 mmol, 35% w/w) was added to a stirred solution of the triazadecatriene 4 (0.50 g, 1.55 mmol) in diethyl ether (c. 25 cm³) contained in a round-bottomed flask (c. 50 cm³) which was firmly stoppered and the mixture was then stirred further (20 h). The flask was opened, stirring was continued (5 h), water (2 cm^3) was added and then the ether layer was separated and the aqueous layer extracted with ether $(2 \times 25 \text{ cm}^3)$. The combined extracts were dried (MgSO₄) and the solvent removed in vacuo to give a yellow crystalline solid (R_F 0.28; eluant npentane) which was identified as 2-amino-8-ethyl-1,1,1trifluoro-5-trifluoromethyl-3,4,8-triazadeca-2,4,6-triene (6) (nc) (0.45 g, 1.48 mmol, 96%). Analysis: Found: C, 39.6; H, 4.6; N, 18.4; F, 37.7%. M⁺, 304. C₁₀H₁₄N₄F₆ requires: C, 39.5; H, 4.6; N, 18.4; F, 37.5%; M, 304. M.p. 78-80 °C. Mass spectrum (m/z): 304 (88%, M⁺); 235 [15, $(M - CF_3)^+$]; 193 (36, $C_4H_3N_2F_6^+$); 178 (32, $C_5H_5N_4F_3^+$; 177 $C_5H_4N_4F_3^+$; (11, (31, 164 $C_5H_5N_3F_3^+$; 152 (17, $C_4N_2F_4^+$); 148 (20, $C_4HN_3F_3^+$); 123 (20, $C_4H_4NF_3^+$), 117 (16, $C_4H_3N_2F_2^+$); 73 (40, $C_4H_{11}N^+$; 72 (16, $C_4H_{10}N^+$); 69 (23, CF_3^+); 58 (100, $C_{3}H_{8}N^{+}$; 56 (35, $C_{3}H_{6}N^{+}$); 43 (23, $C_{2}H_{5}N^{+}$); 42 (39, $C_2H_4N^+$); 29 (98, $C_2H_5^+$); 27 (59, $C_2H_3^+/CHN^+$). IR $(\nu_{\rm max.})$ (cm⁻¹): 3330 and 3150 (m, N-H str.); 3025 (w, vinylic C-H str.); 2975 and 2940 (w, aliph. C-H str.); 1660 (m, C=C str.); 1620 (br., N-H bend); 1560 (m, C=N str.); 1465 (m, CH₂ bend); 1380 (s, CH₃ bend); 1220-1095 (s, C-F str.); 1080 (m, C-N str.); 810 (m, vinylic =C-H out-of-plane bend); 720 (m, CF₃ def.).

(b) With 1-diethylaminocyclopentene (5)

A solution of the enamine 5 (1.27 g, 9.14 mmol) in anhydrous diethyl ether (10 cm³) was added dropwise over a period of 30 min to a stirred solution of the triazadecatriene 4 (1.48 g, 4.58 mmol) in anhydrous diethyl ether (50 cm^3) under a nitrogen atmosphere and the stirring was continued (3 h). The resulting precipitate of the enamine hydrochloride (0.67 g, 3.84)mmol, 42%) was filtered off under a nitrogen atmosphere and the solvent removed from the filtrate under reduced pressure to give a dark red oil (1.98 g) which was shown by TLC (eluant: light petroleum/dichloromethane 3:1 v/v) to contain one major component ($R_{\rm F}$ 0.66). The material was observed to hydrolyse on silica and so it was purified by DCFC (same eluant) using alumina to afford 2-(2-diethylaminocyclopenten-1-yl)-8-ethyl-1,1,1-trifluoro-5-trifluoromethyl-3,4,8-triazadeca-2,4,6triene (17) (nc) (1.44 g, 3.38 mmol, 74%). Analysis: Found: M^+ , 426.2236. $C_{19}H_{28}N_4F_6$ requires: M, 426.2218. Mass spectrum (m/z): 426 (27%, M⁺); 371 $(55, C_{15}H_{21}N_4F_6^+); 299 (9, C_{14}H_{13}N_3F_4^+); 232 (24,$ $C_{11}H_{15}N_2F_3^+$; 218 (39, $C_{10}H_{13}N_2F_3^+/C_{11}H_{15}NF_3^+$); 217 $(44, C_{10}H_{12}N_2F_3^+/C_{11}H_{14}NF_3^+); 195 (23, C_8H_{14}N_2F_3^+);$ 178 (19, C₈H₁₁NF₃⁺); 163 (64, C₆H₆N₂F₃⁺); 137 (40, $C_{9}H_{15}N^{+}$; 125 (48, $C_{8}H_{15}N^{+}$); 81 (30, $C_{2}F_{3}^{+}$); 72 (51, $C_4H_{10}N^+$; 69 (53, CF_3^+); 56 (74, $C_3H_7N^+$); 43 (45, $C_2H_5N^+$); 29 (100, $C_2H_5^+$); 27 (61, $C_2H_3^+$). IR (ν_{max}) (cm⁻¹): 3040 (w, vinylic C-H str.); 2980 and 2920 (m, aliph. C-H str.); 1660 and 1620 (m, C=C str.); 1610 (m, C=N str.); 1450 (m, CH₂ bend); 1380 (m, CH₃) bend); 1260 (m, =C-N str.); 1220–1110 (s, C-F str.); 740 (m, CF_3 def.).

Hydrolysis of 2-(2-diethylaminocyclopenten-1-yl)-8-ethyl-1,1,1-trifluoro-5-trifluoromethyl-3,4,8-triazadeca-2,4,6triene (17)

A mixture of the triazadecatriene 17 (1.00 g, 2.35 mmol) and silica gel (3.0 g) in dichloromethane (35 cm³) was poured on to the top of a DCFC sintercolumn filled with silica gel (c. 30 g) and left (1 h). Elution of the column (eluant: light petroleum/dichloromethane 2:1 v/v) gave two products (R_F 0.43 and 0.21) and unchanged triazadecatriene 17 (0.08 g, 0.19 mmol, 8% recovered). The products were identified as (i) 2-(cyclopentanon-2-yl)-8-ethyl-3,4,8-triazadeca-2,4,6-triene (18) (nc) (0.60 g, 1.62 mmol, 75%). Analysis: Found: C, 48.3; H, 5.3; N, 11.6; F, 30.8%; M⁺, 371. C₁₅H₁₉N₃OF₆ requires: C, 48.5; H, 5.1; N, 11.3; F, 30.7%; M, 371. Mass spectrum (*m*/*z*): 371 (15%, M⁺); 302 [8, $(M - CF_3)^+$]; 299 [4, $(M - Et_2N)^+$]; 195 (42, $C_8H_{14}N_2F_3^+$; 193 (18, $C_8H_{12}N_2F_3^+$); 178 (40, $C_{7}H_{7}NOF_{3}^{+}$; 150 (17, $C_{8}H_{12}N_{3}^{+}$); 148 (22, $C_{8}H_{10}N_{3}^{+}$); 125 (100, $C_7H_{13}N_2^+$); 110 (19, $C_7H_{12}N^+/C_6H_8NO^+$); 109, $(31, C_6H_7NO^+)$; 81 $(32, C_2F_3^+)$; 72 $(33, C_4H_{10}N^+)$; 69 (51, CF_3^+); 57 (27, $C_3H_7N^+$); 56 (53, $C_3H_6N^+$); 55 $(44, C_3H_3O^+); 54 (27, C_3H_2O^+); 42 (48, C_2H_4N^+); 41$ $(35, C_2H_3N^+)$; 29 (91, $C_2H_5^+$); 27 (65, $C_2H_3^+$). IR $(\nu_{\rm max})$ (cm⁻¹): 3020 (w, vinylic C-H str.); 2990 (m, aliph. C-H str.); 1750 (s, C=O str.); 1620 (s, C=C and C=N str.); 1450 (m, CH₂ bend); 1375 (m, CH₃ bend); 1280 (s, =C-N str.); 1220-1080 (s, C-F str.); 740 (m, CF₃ def.) and (ii) 1-[1-(cyclopentanon-2-ylidine)-2,2,2-trifluoroethyl]-3-trifluoromethylpyrazole (19) (nc) (0.098 g, 0.33 mmol, 15%). Analysis: Found: C, 44.6; H, 3.0; N, 9.7%; M⁺, 298. C₁₁H₈N₂OF₆ requires: C, 44.3; H, 2.7; N, 9.4%; M, 298. ¹H NMR δ: 7.48 (d, 1H, ring = CHN, J = 2.8 Hz); 6.67 (d, 1H, ring = CHC-, J=2.8 Hz); 3.12 (tq, 2H, ring CH₂C=, J=7.5 Hz, $J_{CF-CH} = 3.0$ Hz); 2.39 (t, 2H, ring CH₂C=O, J=7.5 Hz); 2.06 (pent., ring $CH_2CH_2CH_2$, J=7.5 Hz) ppm. ¹⁹F NMR δ : +16.4 (s, 3F, CF₃C=N); +13.6 (t, 3F, $CF_3C=C, J=3.0 \text{ Hz}$) ppm. ¹³C NMR δ : 201.6 (s, C=O); 144.5 (q, ring C=N, ${}^{2}J$ =38.8 Hz); 141.8 (s, ring =C); 133.4 (s, ring =CHN); 126.3 (q, $CF_3C=C$, ${}^2J=45.1$ Hz); 120.7 (q, CF₃, ${}^{1}J = 268.6$ Hz); 120.4 (q, CF₃, ${}^{1}J = 276.7$ Hz); 102.9 (s, ring =*C*HC-); 38.5 (s, CH₂C=O); 28.5 (s, CH₂C=C); 18.5 (s, CH₂) ppm. Mass spectrum (m/z): 298 (60%, M⁺); 279 [24, (M-F)⁺]; 270 [38, $(M-CO)^+$]; 242 [44, $(M-C_2H_4CO)^+$]; 229 $[73, (M - CF_3)^+]; 201 [21, (M - CO - CF_3)^+]; 173 [100,$ $(M - C_2H_4CO - CF_3)^+$; 149 (17, $C_6H_4OF_3^+$); 117 (15, $C_4H_3N_2F_2^+$; 69 (83, CF_3^+); 55 (49, $C_3H_3O^+$); 42 (30, $C_2H_2O^+$); 40 (14, $C_2H_2N^+$); 38 (30, $C_3H_2^+/C_2N^+$). IR (ν_{max}) (cm⁻¹): 3040 (w, vinylic C-H str.); 2980 and 2920 (aliph. C-H str.); 1715 (m, C=O str.); 1660 (m, C=C str.); 1610 (m, C=N str.); 1450 (m, CH₂ bend); 1260 (m, =C-N str.); 1220–1110 (s, C-F str.); 740 $(m, CF_3 def.)$.

Acknowledgements

We thank the Hariri Foundation for a grant (to M.M.A-G.) and Dr R.G. Pritchard (UMIST) for carrying out the X-ray structural determination on compound **6**.

References

1 For Part 13, see D. Bell and A.E. Tipping, J. Fluorine Chem., 66 (1994) 279.

- 2 S.H. Benomar, N.J. O'Reilly and A.E. Tipping, J. Fluorine Chem., 51 (1991) 207.
- 3 M.M. Abdul-Ghani, R.G. Pritchard and A.E. Tipping, Acta Crystallogr., C50 (1994) 719.
- 4 H.D. Roth and M.L. Manion, J. Am. Chem. Soc., 97 (1975) 6886.
- 5 X. Ci, R.S. da Silva, D. Nicodem and D.G. Whitten, J. Am. Chem. Soc., 111 (1989) 1337.
- 6 M.G. Barlow, D. Bell, N.J. O'Reilly and A.E. Tipping, J. Fluorine Chem., 23 (1983) 293; D. Bell, A.O.A. Eltoum, N.J. O'Reilly and A.E. Tipping, J. Fluorine Chem., 64 (1993) 151.
- 7 E.P. Blanchard, J. Org. Chem., 28 (1963) 1397.